If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+16x-28=0
a = 15; b = 16; c = -28;
Δ = b2-4ac
Δ = 162-4·15·(-28)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-44}{2*15}=\frac{-60}{30} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+44}{2*15}=\frac{28}{30} =14/15 $
| 4w+0=8w+12 | | 3y+3=6y-3 | | 7v+7=3v+23 | | 3u+39=8u-11 | | x+3(0.3x+2)=18 | | X=42-2x | | x+3(0.3+2)=18 | | 9a+4=85 | | 31x^2+125x-150=0 | | 10x^2+78x+154=0 | | 6x+3=126 | | 1/8k-40=-26 | | 9u+72=3u+48 | | 6x+120=75-2x | | -6v+1=0 | | 4y+20=8y-20 | | (3x+30)+(10x-6)=180 | | 21q-11=220.5 | | 16-4z=4(z-4) | | 8u+7u-35=25 | | 2x-15=2x-15+90=180 | | -12=4v+7v+21 | | 13x+22=16 | | (9x+5)(3x^2-14x-5)=0 | | 14.9+3y=6y+8 | | 4-2(x+5)=-14 | | 14x^2+83x+65=0 | | 3w+18=7w+30 | | 7v+5=4v+26 | | F(x)=4x1x | | (X+3)×(x-3)=7 | | 4u+24=8u-8 |